Bac S 2018 Métropole

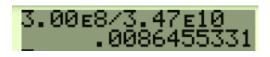
Correction © http://labolycee.org

EXERCICE II: SERVICE ET RECEPTION AU VOLLEY-BALL (11 points)

1. Mesure de la vitesse initiale du ballon

1.1. On a
$$\lambda = \frac{c}{f}$$

soit
$$\lambda = \frac{3,00 \times 10^8}{3.47 \times 10^{10}} = 8,65 \times 10^{-3} \text{ m}$$



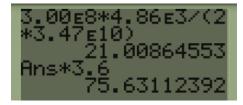
Comme la longueur d'onde est comprise entre 10⁻³ m et 1 m, le radar utilise des **micro-ondes**.

- **1.2.** Le phénomène à l'origine de la différence de fréquence entre les ondes émises et reçues est **l'effet Doppler**.
- **1.3.** Le ballon se **rapproche** du radar. La fréquence de l'onde reçue est **supérieure** à celle de l'onde émise.

En effet, dans le cas des ondes sonores, le son émis par une ambulance à la fréquence $f_{\text{émise}}$ est perçu par une personne immobile plus aigu à l'approche de l'ambulance que lorsque l'ambulance est immobile : ainsi $f_{\text{reçue}} > f_{\text{émise}}$.

1.4.
$$\left| \Delta f \right| = \frac{2v_0 f_{\text{émise}}}{c}$$
 soit $v_0 = \frac{c \left| \Delta f \right|}{2f_{\text{émise}}}$

$$v_0 = \frac{3,00 \times 10^8 \times 4,86 \times 10^3}{2 \times 3,47 \times 10^{10}} =$$
21,0 m.s⁻¹ = 75,6 km.h⁻¹.



Le radar indique 76 km.h⁻¹. Il y a accord entre la valeur indiquée par le radar et le calcul.

2. Validité du service

2.1. On applique la deuxième loi de Newton, au système {ballon} supposé ponctuel, de masse m constante, dans le référentiel du sol supposé galiléen.

$$\Sigma \overrightarrow{F_{ext}} = m\vec{a}$$

Seule la force poids \vec{P} est prise en considération car l'action de l'air négligée.

$$\vec{P} = m\vec{a}$$

$$\overrightarrow{mg} = \overrightarrow{ma}$$

$$\vec{q} = \vec{a}$$

En utilisant le repère (Oxy) indiqué, on vérifie que
$$\overrightarrow{a} \begin{cases} a_x = 0 \\ a_y = -g \end{cases}$$
.

Vu hier en Asie!

2.2. Par définition $\vec{a} = \frac{d\vec{v}}{dt}$, on obtient les coordonnées de \vec{v} en primitivant celles de \vec{a} :

$$\overrightarrow{V} \begin{cases} v_x = C_1 \\ v_y = -gt + C_2 \end{cases} \text{ or } \overrightarrow{V_0} \begin{cases} V_{0x} = v_0 = C_1 \\ V_{oy} = 0 = C_2 \end{cases} \qquad \text{donc } \overrightarrow{v} \begin{cases} v_x = v_0 \\ v_y = -gt \end{cases}$$

On nomme B le point modélisant le centre du ballon.

Par définition $\vec{v} = \frac{d\overrightarrow{OB}}{dt}$, on obtient les coordonnées de \overrightarrow{OB} en primitivant celles de \vec{v} :

$$\overrightarrow{OB} \begin{cases} x = v_0 t + C_3 \\ y = -\frac{1}{2}gt^2 + C_4 \end{cases} \text{ or } \overrightarrow{OB}(t=0) \begin{cases} x(0) = 0 = C_3 \\ y(0) = OB_0 = h = C_4 \end{cases} \text{ donc } \overrightarrow{OB} \begin{cases} x = v_0 t \\ y = -\frac{1}{2}gt^2 + h \end{cases}.$$

Déterminons l'expression de la trajectoire du point B : $x = v_0 t$ donc $t = \frac{x}{v_0}$.

On reporte cette expression du temps dans l'expression de l'ordonnée $y(t) = -\frac{1}{2}gt^2 + h$

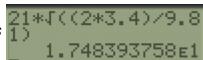
$$y(x) = -\frac{1}{2}g\left(\frac{x}{v_0}\right)^2 + h$$
 soit $y(x) = -\frac{gx^2}{2v_0^2} + h$

2.3. Lorsque le ballon touche le sol alors son centre d'inertie se situe à l'altitude y = r. Il touche le sol avant la ligne de fond si la solution de l'équation y(x) = 0.10 m donne une valeur de x inférieure à L = 18.0 m:

$$r = -\frac{g \cdot x^2}{2 \cdot v_0^2} + h \iff \frac{g x^2}{2 v_0^2} = h - r \iff x^2 = \frac{2 v_0^2 (h - r)}{g}$$

En ne gardant que la solution positive : $x = \sqrt{\frac{2v_0^2(h-r)}{g}}$ soit $x = v_0 \sqrt{\frac{2(h-r)}{g}}$

$$x = 21.0 \times \sqrt{\frac{2 \times (3.5 - 0.10)}{9.81}} = 17 \text{ m} < L$$
 avec deux chiffres significatifs
$$\frac{21 \times \sqrt{(2 \times 3.4) \times 9.8}}{1.748393758 \text{ e}1}$$



Le centre du ballon touche le sol avant la ligne de fond.

Remarque : On suppose que l'oubli du rayon du ballon ne sera pas sanctionné.

Version sans tenir compte du rayon :

Lorsque le ballon touche le sol alors son centre d'inertie se situe à l'altitude y = 0. Il touche le sol avant la ligne de fond si la solution de l'équation y(x) = 0 m donne une valeur de x inférieure à

$$0 = -\frac{g \cdot x^{2}}{2 \cdot v_{0}^{2}} + h \iff \frac{g x^{2}}{2 v_{0}^{2}} = h \iff x^{2} = \frac{2 \cdot v_{0}^{2} \cdot h}{g}$$

En ne gardant que la solution positive : $x = \sqrt{\frac{2.v_0^2.h}{g}}$ soit $x = v_0 \sqrt{\frac{2.h}{g}}$ $\frac{2.x_0^2.h}{21 + \sqrt{2*3.5} + 9.81}$

$$x = 21,0 \times \sqrt{\frac{2 \times 3,5}{9.81}} = 18 \text{ m} \sim \text{L}$$
 avec deux chiffres significatifs

Le manque de chiffres significatifs ne permet pas de conclure avec certitude. Le centre du ballon semble toucher le sol avant la ligne de fond.

2.4.1. Énergie cinétique : $E_c = \frac{1}{2}mv^2$

Énergie potentielle de pesanteur : $E_{pp} = m.g.y$

Énergie mécanique : $E_m = E_c + E_{pp}$

2.4.2. La courbe 3 est une droite horizontale. En négligeant les actions de l'air, l'énergie mécanique du ballon reste constante au cours du mouvement. La courbe 3 est donc celle de l'énergie mécanique.

L'énergie associée à la courbe 1 diminue jusqu'à s'annuler. Elle correspond à l'énergie potentielle de pesanteur car y diminue jusqu'à devenir nul lorsque y = 0.

La courbe 2 correspond donc à celle de l'énergie cinétique. Cette énergie augmente car au cours de la chute du ballon, la vitesse du ballon augmente.

2.4.3. Comme E_m est constante au cours du mouvement on a :

 $E_m(t=0) = E_m(t_{sol})$ où t_{sol} est la date pour laquelle le ballon touche le sol à la vitesse v_{sol} .

$$\frac{1}{2}m.v_0^2 + m.g.h = \frac{1}{2}.m.v_{sol}^2 + m.g.r \quad \text{car } y(t_{sol}) = r = 0,10 \text{ m}.$$

On multiplie par 2/m.

$$V_0^2 + 2.g.h = V_{sol}^2 + 2.g.r$$

$$V_{sol}^2 = V_0^2 + 2.g.(h-r)$$

$$v_{sol} = \sqrt{v_0^2 + 2.g.(h-r)}$$

$$v_{sol} = \sqrt{21,0^2 + 2 \times 9,81 \times (3,5-010)} = 23 \text{ m.s}^{-1}.$$

Remarque 1:

Sur la figure 3, l'axe vertical des énergies n'est pas gradué. Il est donc déconseillé de l'utiliser. On peut cependant conduire ce raisonnement :

$$E_C(t_{sol}) = 5 E_{pp}(t=0)$$

$$\frac{1}{2}$$
 m.v_{sol}² = 5.m.g.h

$$v_{sol}^2 = 10.g.h \Leftrightarrow v_{sol} = \sqrt{10.g.h}$$

$$v_{sol} = \sqrt{10 \times 9.81 \times 3.5} = 18.5 \text{ m.s}^{-1}$$

<u>Remarque 2 :</u> Là encore la prise en compte du rayon est discutable. En effet, le sujet indique $E_{pp} = 0$ J pour y = 0 m. Cela signifie que le centre du ballon touche le sol. C'est une crêpe volante ? Cette indication pousse à ne pas tenir compte du rayon.

Version sans tenir compte du rayon :

 $E_m(t=0) = E_m(t_{sol})$ où t_{sol} est la date pour laquelle le ballon touche le sol à la vitesse v_{sol} .

$$\frac{1}{2}m.v_0^2 + m.g.h = \frac{1}{2}.m.v_{sol}^2 + 0 \quad car\ y(t_{sol}) = 0\ m$$

On multiplie par 2/m.

$$V_0^2 + 2.g.h = V_{sol}^2$$

$$V_{sol} = \sqrt{V_0^2 + 2.g.h}$$

$$V_{sol} = \sqrt{21.0^2 + 2 \times 9.81 \times 3.5} = 23 \text{ m.s}^{-1}.$$

2.5. Les frottements de l'air s'opposent au mouvement du ballon. Cela justifie le fait que la vitesse du ballon lorsqu'il touche le sol est plus petite que celle calculée.

3. Réception du ballon par un joueur de l'équipe adverse

Le joueur J est situé sur la ligne de fond en $x_J = L = 18,0$ m à la date t = 0 s et se déplace vers le filet avec une vitesse v_J , à déterminer, afin de réceptionner le ballon au point R.

Dans le repère choisi, l'équation horaire du joueur sur l'axe des abscisses est alors : $x_J(t) = L - v_J \cdot t$

Lorsque le joueur réceptionne le ballon à la date t_R à la hauteur $h_R = 0,80$ m, le centre B du ballon est situé à l'altitude $y_B = h_R + r$, on a :

$$\begin{cases} x_{B}(t_{R}) = x_{J}(t_{R}) \\ y_{B}(t_{R}) = y_{J}(t_{R}) \end{cases} \text{ soit } \begin{cases} v_{0}.t_{R} = L - v_{J}.t_{R} \text{ (1)} \\ -\frac{1}{2}.g.t_{R}^{2} + h = h_{R} + r \text{ (2)} \end{cases}$$

De l'équation (2), on tire la valeur de t_R .

(2):
$$-\frac{1}{2}gt_R^2 + h = h_R + r$$

$$\Leftrightarrow \frac{1}{2}gt_R^2 = h - h_R - r$$

$$\iff t_R^2 = \frac{2(h - h_R - r)}{g}$$

finalement:
$$t_R = \sqrt{\frac{2(h - h_R - r)}{g}}$$
.

$$t_R = \sqrt{\frac{2 \times (3,5 - 0,80 - 0,10)}{9,81}} =$$
0,73 s

Puis en reportant dans (1) on calcule la valeur de v_J.

(1):
$$V_0.t_R = L - V_J.t_R$$

$$\Leftrightarrow V_J.t_R = L - V_0.t_R$$

$$\Leftrightarrow V_J = \frac{L}{t_P} - V_0$$

$$v_J = \frac{18.0}{0.74...} - 21.0 = 3.7 \text{ m.s}^{-1}.$$

J(2*(3.5-0.8-0.1)/9.81) 7.280599946e-1 Ans:1*18-21 3.723237279e0 Ans*3.6 1.34036542e1

En multipliant par 3,6, on obtient $V_J = 13 \text{ km.h}^{-1}$.

Cette valeur de vitesse est facilement à la portée d'un sportif, mais il s'agit d'une vitesse moyenne. Sachant que le sportif était immobile à t = 0 s, il faut donc qu'il atteigne une vitesse instantanée finale bien supérieure à la vitesse moyenne calculée.

Là encore, version sans le rayon du ballon :

Lorsque le joueur réceptionne le ballon à la date t_R à la hauteur $h_R = 0,80$ m, le centre B du ballon est situé à l'altitude $y_B = h_R$, on a :

$$\begin{cases} x_{B}(t_{R}) = x_{J}(t_{R}) \\ y_{B}(t_{R}) = y_{J}(t_{R}) \end{cases}$$
 soit
$$\begin{cases} v_{0}.t_{R} = L - v_{J}.t_{R} (1) \\ -\frac{1}{2}.g.t_{R}^{2} + h = h_{R} (2) \end{cases}$$

De l'équation (2), on tire la valeur de t_R .

(2):
$$-\frac{1}{2}gt_R^2 + h = h_R$$

$$\Leftrightarrow \frac{1}{2}gt_R^2 = h - h_R$$

$$\iff t_R^2 = \frac{2(h - h_R)}{a}$$

finalement:
$$t_R = \sqrt{\frac{2(h - h_R)}{g}}$$
.

$$t_R = \sqrt{\frac{2 \times (3,5 - 0,80)}{9,81}} = 0,74 \text{ s}$$

Puis en reportant dans (1) on calcule la valeur de v_J.

(1):
$$V_0.t_R = L - V_J.t_R$$

$$\Leftrightarrow V_J.t_R = L - V_0.t_R$$

$$\Leftrightarrow V_J = \frac{L}{t_R} - V_0$$

$$v_J = \frac{18.0}{0.74} - 21.0 = 3.3 \text{ m.s}^{-1}$$
. En multipliant par 3.6, on obtient $V_J = 12 \text{ km.h}^{-1}$.

Pour finir, une version plus simple, qui sera elle aussi acceptée.

Après calcul de t_R , on calcule l'abscisse du ballon $x(t_R) = v_0.t_R$

Avec le rayon :

Sans le rayon:

 $x(t_R) = 21,0 \times 0,73 =$

 $x(t_R) = 21,0 \times 0,74$

 $x(t_R) = 15.3 \text{ m}$

 $x(t_R) = 15.6 \text{ m}$

Le joueur doit alors parcourir la distance $L - x(t_R)$ pendant la durée t_R .

Il doit se déplacer à la vitesse moyenne $v = \frac{L - x(t_R)}{t_R}$.

$$v = \frac{18,0-15,3}{0,74} = 3,7 \text{ m.s}^{-1} = 13 \text{ km.h}^{-1}$$

$$V = \frac{18,0-15,6}{0,74} = 3,2 \text{ m.s}^{-1} = 12 \text{ km.h}^{-1}$$