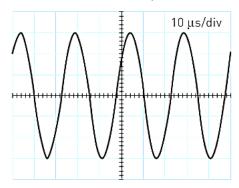

Mesure de la célérité du son

Un « clap » rapide et fort est à l'origine d'un son qui déclenche l'acquisition informatique du signal lorsque l'onde arrive au micro 1 :



En vous aidant du graphe obtenu (ci-dessous), déterminer la célérité du son dans l'air.

2 Etude d'un son périodique

Sélectionner la (ou les) réponse(s) correcte(s).

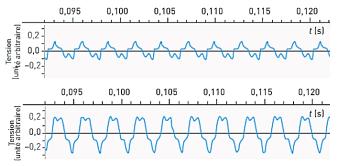
- 1. Sur l'enregistrement ci-dessus, on peut voir :
- a 8 motifs
- (b) plus de 3 motifs
- © 4 motifs
- 2. La fréquence du signal est :
- a la durée d'un motif.
- (b) le nombre de motifs par seconde.
- © le nombre de secondes par motif.

3. La période vaut :

@ 2,0 s

4. La fréquence vaut : (a) 40 000 Hz

(b) 20 000 Hz

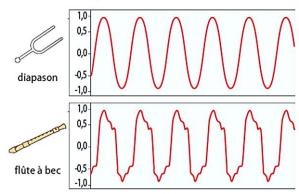

Perception des sons

Indiquer si les affirmations suivantes sont vraies ou fausses :

- 1. Les chiens perçoivent les ultrasons car ils entendent des sons dont la fréquence est inférieure à 20 Hz.
- 2. Un son grave correspond à une fréquence élevée.
- 3. Plus la période d'un signal sonore est faible, plus le son est aigu.
- 4. L'oreille normale ne perçoit pas les sons de fréquence supérieure à 20 kHz.

Comparaison de deux sons

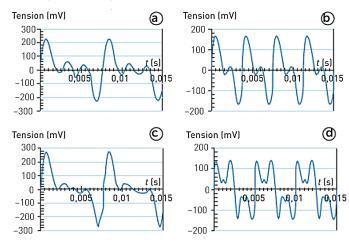
Voici deux enregistrements réalisés à la même échelle en jouant sur un marimba avec des baguettes diffé rentes:



Indiquer si les affirmations sont vraies ou fausses

- 1. Les signaux possèdent la même fréquence.
- L'amplitude est différente.
- Le timbre est le même.

Deux instruments et une même note


On enregistre la même note mais jouée par deux instruments de musique différents. Un logiciel d'acquisition nous permet de les comparer :

- Pourquoi dit-on que ces deux sons ont la même hauteur mais qu'ils ont un timbre différent?
- 2. Ont-ils la même intensité sonore?

Notes identiques

Déterminer parmi les enregistrements ci-dessous, ceux qui correspondent à la même note :

