2de / Chapitre 12 Livre p 198/200

LES FORCES ET LEURS ACTIONS SUR LES MOUVEMENTS

1) Représentation des forces :

ACTIVITÉ 1

L'action exercée par un objet (=acteur) sur un autre objet (=receveur) peut être modélisée par une force.

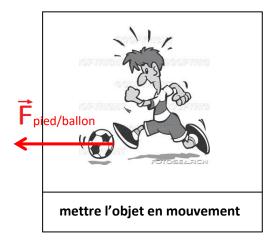
Cette force est représentée par un segment fléché, appelé vecteur force F, dont les caractéristiques sont :

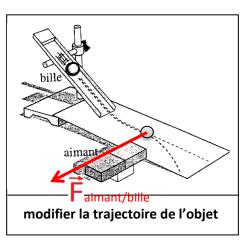
point d'application

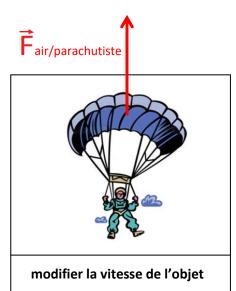
direction

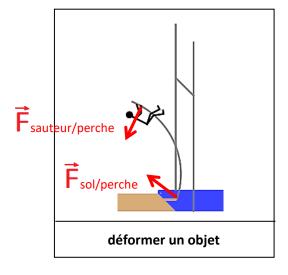
ens

intensité f

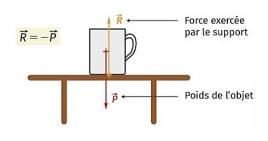

unité : Newton (N)

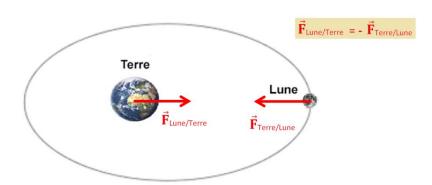



La mesure d'une force s'effectue à l'aide d'un dynamomètre.


Un dynamomètre est constitué d'un ressort dont l'allongement est proportionnel à la force qui lui est appliquée.

Lorsqu'une force s'exerce sur un objet elle peut avoir différents effets:



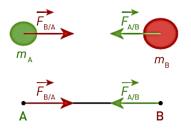

Exercices: n°11,(12),13,21,24 p203/205

2) Principe des actions réciproques :

Lorsqu'un objet A exerce une force sur un objet B, alors l'objet B exerce une force réciproque sur l'objet A de même direction, même valeur mais de sens opposé : $\vec{F}_{A/B} = -\vec{F}_{B/A}$

Exemples:

Exercices: n°15,26,30 p203/206


3) Force gravitationnelle et poids:

ACTIVITÉ 2

a - Force d'attraction gravitationnelle :

Deux corps A et B, de masses respectives $m_{\rm A}$ et $m_{\rm B}$, séparés par une distance d exercent l'un sur l'autre des actions attractives appelées forces d'attraction gravitationnelle, $\vec{F}_{\rm A/B}$ et $\vec{F}_{\rm B/A}$. Elles ont :

- la même direction (droite joignant les corps modélisés par des points)
- des sens opposés
- la même valeur : $F = F_{A/B} = F_{B/A} = G \times \frac{m_A \times m_B}{d^2}$

avec $m_{\rm A}$ et $m_{\rm B}$ en kilogramme (kg) ; d en mètre (m) ; F en newton (N) ; G la constante de gravitation universelle

b - Le poids:

À proximité de la surface d'un astre tel que la Terre, tout corps de masse m est soumis à C'est cette force, appelée poids, qui est à l'origine de la chute des objets.

Le poids \vec{P} d'un objet de masse m situé à la surface d'un astre est la force que cet astre exerce sur lui : $\vec{P} = m \times \vec{g}_{\text{Astre}}$

 $ec{P}$ a pour caractéristiques :

 $valeur: P = m \times g$, exprimée en newton (N)

avec g: intensité de la pesanteur (N.kg⁻¹); m: masse en kilogramme (kg)

direction : verticale (du lieu considéré)

sens: du haut vers le bas

Remarque:

 $m \times g = G \times \frac{m \times m_{\mathrm{T}}}{R_{\mathrm{T}}^2}$ soit $g = G \times \frac{m_{\mathrm{T}}}{R_{\mathrm{T}}^2}$

À la surface de la Terre, le poids d'un objet et la force d'attraction gravitationnelle exercée par la Terre sur cet objet sont quasiment égales. Ainsi :

Exercices: Lire « résoudre un exercice » p201 puis faire n°10,19 p202/204

4) Principe d'inertie:

ACTIVITÉ 3

L'inertie d'un objet est sa tendance à rester immobile ou à conserver son mouvement.

Grâce à un principe fondamental de la physique découvert par **Galilée fin XVI**ème **siècle** et formulé par **Newton fin XVII**ème **siècle**, on peut prévoir quel sera le mouvement d'un objet en fonction des forces qui s'exercent sur lui (et réciproquement) :

PRINCIPE D'INERTIE:

Si un objet est soumis à des forces qui se compensent ($\Sigma \vec{F} = \vec{0}$) alors il est soit immobile, soit animé d'un mouvement rectiligne uniforme.

Réciproque : Si un objet est immobile ou animé d'un mouvement rectiligne uniforme alors il est soumis à des forces qui se compensent.

Contraposée:

Quand un objet est animé d'un mouvement qui n'est pas rectiligne uniforme alors il est soumis à des forces qui ne se compensent pas. Dans ce cas, son vecteur vitesse varie dans le même sens et la même direction que le vecteur $\Sigma \vec{F}$. ($\Sigma \vec{F}$ somme vectorielle des forces).

Exercices: n°1,2,3,4 (photocopie)